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In the first part of this series [Keith et al. (2004). Cryst. Growth Des. 4, 1009–

1012; Mettes et al. (2004). Acta Cryst. A60, 621–636], a method was developed

for constructing global phase diagrams (GPDs) for molecular crystals in which

crystal structure is presented as a function of intermolecular potential

parameters. In that work, a face-centered-cubic center-of-mass lattice was

arbitrarily adopted as a reference state. In part two of the series, experimental

crystal structures composed of tetrahedral point group molecules are classified

to determine what fraction of structures are amenable to inclusion in the GPDs

and the number of reference lattices necessary to span the observed structures.

It is found that 60% of crystal structures composed of molecules with Td point-

group symmetry are amenable and that eight reference lattices are sufficient to

span the observed structures. Similar results are expected for other cubic point

groups.

1. Introduction

In the first part of this series, a method for constructing a

global phase diagram (GPD) for molecular crystals of mole-

cules of a given point-group symmetry was developed (Mettes

et al., 2004). Conventional phase diagrams present the equi-

librium phase behavior of a chemical substance or of a mixture

of substances as functions of thermodynamic variables such as

temperature, pressure or composition. GPDs also present

equilibrium phase behavior, but at least one of the indepen-

dent variables of the diagram is either a parameter in an

empirical equation of state or a parameter in an inter-

molecular potential. The classic example of a GPD of the first

type is the classification scheme for high-pressure vapor–liquid

phase equilibria by van Konyenburg (van Konyenburg &

Scott, 1980). Their classification was based on the van der

Waals equation of state with simple binary mixing rules.

Despite the crude equation of state employed, it is still widely

used to classify the phase behavior of real binary mixtures.

Our GPDs are of the second type. They use an intermolecular

potential constructed from a subset of a complete set of

intermolecular potential basis functions for molecules sharing

a particular point-group symmetry. The parameters of the

intermolecular potential are axes on GPDs. At the origin of

each diagram is a plastic crystal phase that serves as the

reference state for construction of the diagram. In the example

developed previously (Keith et al., 2004; Mettes et al., 2004), a

diagram was constructed for molecules of Td point-group

symmetry and a face-centered-cubic (f.c.c.) reference lattice.

These choices were motivated in part by the classic analysis of

methane phase behavior (James & Keenan, 1959). Two inde-

pendent variables were arbitrarily chosen by Keith et al.

(2004) and three independent variables were chosen by

Mettes et al. (2004).

Two issues were left unresolved in the previous contribution

(Mettes et al., 2004). First, the number and variety of reference

lattices needed to summarize experimental crystal structures

was not determined. Although the f.c.c. reference lattice is

appropriate for cryogenic methane, it is expected that other

reference lattices are required to span the diversity of

observed crystal structures. Second, the number of indepen-

dent variables necessary to span the diversity of inter-

molecular potentials was not determined. It has been asserted

that too many parameters are needed to represent an inter-

molecular potential to be practical (Briels, 1980). This asser-

tion was based on a particular method for associating a

potential with a parameter set. While the method employed

was reasonable, it is not the only possibility. It left open the

possibility that another association would lead to a more

practical parameter-set dimensionality. The first issue is

addressed in this contribution while the second is addressed in

a separate contribution (Keith & McClurg, 2010).

The outline of the balance of the paper is as follows. In x2

we discuss the derivation of our data set, its chemical and

crystallographic characteristics, and classify entries based on

structural similarity. In x3 we deduce reference lattices for



each structure. The resulting assignments and their implica-

tions for use in constructing GPDs are discussed in x4.

2. Data set

Since molecular crystal GPDs are constructed for molecules of

a given molecular point-group symmetry, we have chosen to

use the CSDSymmetry database as the primary source of

crystal structures for this study (Yao et al., 2002). This database

summarizes the point groups of molecules that form non-

disordered, non-polymeric, non-ionic, coordinate-determined

molecular crystals in the Cambridge Structural Database

(CSD). Duplicate structures were removed from the database

and hydrogen atoms were not considered when assigning

point groups. While the methods introduced in our previous

work (Mettes et al., 2004) are applicable to disordered struc-

tures, which are systematically absent from CSDSymmetry, it

is a convenient source of crystal data for molecules of a

particular point group. Our methods are restricted to single-

component crystals, however. Therefore we worked with the

single-component crystal subset of the CSDSymmetry data-

base. This was accomplished by first querying the CSD for all

single-component crystals using CONQUEST, the interface to

the CSD, and then using CONQUEST to take the intersection

of the two data sets.

Continuing the example begun in our prior work (Mettes et

al., 2004), we chose to consider crystals composed of mole-

cules with Td molecular point-group symmetry. We have

augmented the data from CSDSymmetry with a recently

determined structure of the low-temperature ordered phase of

heavy methane (Neumann et al., 2003). The data set contains

71 crystal structures of 70 different chemical substances. Only

carbon tetrachloride (CCl4) appeared twice in different

polymorphs [CSD structures CARBTC (Piermarini & Braun,

1973) and CARBTC07 (Cohen et al., 1979)]. Names and

chemical formulas for all the entries are given in Table 9 of the

supplementary material.1 The chemical structures include 15

hydrocarbons and their substituted derivatives and 56

organometallics. The organometallics contain 30 different

metals: Al, As, Bi, Cd, Co, Cs, Cu, Ga, Ge, Hf, In, Mg, Mn, Na,

Ni, Np, Pb, Pt, Re, Rh, Ru, Sb, Si, Se, Sn, Tc, Th, Ti, U and Zn.

Eight molecular framework types, also shown in (supple-

mentary) Table 9, are present in the data set: cubane (29),

adamantane (17), MX4 (16), tetrahedrane (3) and others (6).

There are entries from all seven crystal systems in the data set.

Twenty crystals are cubic (also called isometric), one is

hexagonal, five are trigonal, ten are tetragonal, six are

orthorhombic, 22 are monoclinic and seven are triclinic (also

called anorthic), as illustrated in Fig. 1. This distribution is

different than the CSD as a whole (Baur & Kassner, 1992), but

that is not surprising given the larger-than-average number of

symmetries in the Td point group. The data set is sufficient,

however, to test whether molecular crystal GPDs apply to

organic and organometallic molecules, a variety of molecular

frameworks, and all seven crystal systems.

2.1. Space-group-assignment corrections

Several researchers have shown that structures with incor-

rect space-group assignments account for at least 3% of the

entries in the CSD (Baur & Tillmanns, 1986; Marsh, 1995).

Given the size of the test set used in this study, it is to be

expected that a few errors must be identified and corrected.

CSD entry JUFWUC (Tesh et al., 1992) appears to have

been incorrectly assigned to space group P23 (No. 195) rather

than P43m (No. 215). Both space groups are members of the

generic cubic extinction symbol P–––. Thus they have no

systematic extinctions and thus X-ray diffraction peaks occur

in all of the same positions for both groups. They belong to

different Laue classes, however. Space group 195 is in Laue

class m3 while space group 217 is in m3m. Space group 195

is a subgroup of 215 of order two. The symmetry operation

present in 215 but missing in 195 is a face-diagonal mirror

plane. The fractional coordinates for the Cs, N and Si atoms

provided by the authors are all consistent with the existence of

the ‘missing’ mirror plane. The fractional coordinates of the

carbon atoms are very nearly consistent with the existence

of the mirror plane and are within the indicated error given

by the authors. The hydrogen-atom positions provided in

JUFWUC.cif were calculated and not determined experi-

mentally. Therefore they do not provide independent evidence

of the crystal symmetry. Evidently the structure was deter-

mined under space group 195, but space group 215 cannot be

ruled out based on the authors’ own estimates of the uncer-

tainties in the fractional coordinates. It is standard practice to

accept the higher-symmetry space group in this case.

CSD entry HMGETP (Dahl et al., 1976) appears to have

been incorrectly assigned to space group I23 (No. 197) rather

than I43m (No. 217). Both space groups are members of the

generic body-centered cubic (b.c.c.) extinction symbol I–––.

Thus they have the same systematic extinctions and thus X-ray

diffraction peaks occur in all of the same positions for both

groups. They belong to different Laue groups, however. Space
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Figure 1
Crystal systems for crystals of tetrahedral molecules.

1 Names and chemical formulas for all the entries discussed in this paper are
available from the IUCr electronic archives (Reference: PZ5071). Services for
accessing these data are described at the back of the journal.



group 197 is in Laue class m3 while space group 217 is in m3m.

Space group 197 is a subgroup of 217 of order two. The

symmetry operation present in 217 but missing in 197 is a face-

diagonal mirror plane. The fractional coordinates for the Ge

and P atoms provided by the authors are all consistent with the

existence of the ‘missing’ mirror plane. The fractional coor-

dinates of the carbon atoms are very nearly consistent with the

existence of the mirror plane. Since no error estimate for the

fractional coordinates was provided by the authors, the

distance from the given atomic position to the proposed

mirror plane was calculated as an indication of the difference

between the reported symmetry and the proposed symmetry.

Adjusting the carbon-atom positions by 0.0049 Å along two

coordinate directions restores the ‘missing’ mirror plane. This

is well within the resolution of the structure determination. No

hydrogen-atom positions were provided in HMGETP.cif.

Evidently the structure was determined under space group

197, but space group 217 cannot be ruled out based on a

reasonable estimate of the uncertainties in the fractional

coordinates. It is standard practice to accept the higher-

symmetry space group in this case.

It is interesting to note that both of the above structures

appear to have been mistakenly assigned to a lower-than-

necessary space group owing to the omission of a face-

diagonal mirror plane. Assignment of the structure to the

incorrect space group is due to the incorrect Laue point-group

assignment. This is a type 2 error in the nomenclature of Baur

& Tillmanns (1986). In such cases the reported structure is

very similar to the presumed correct structure. Correcting the

error requires only adjusting the reported atomic fractional

coordinates and changing the reported space group.

One entry [CSD structure XUWROW (Sung et al., 2002)] is

a very unusual structure containing 70% voids as recorded by

the CCDC staff in the corresponding cif file in the CSD.

Although low-density sphere packings are possible, stability

requires that each sphere be surrounded by at least four

neighbors that are not in the same hemisphere (Conway &

Sloane, 1998). Structure XUWROW has large voids separ-

ating layers of molecules parallel to the {001} plane. Molecules

at the edges of the layers have all of their neighbors in a single

hemisphere and therefore violate a necessary condition for

sphere packing stability. Also, the layers are separated by wide

voids in the reported structure. Dispersion interactions

between the layers would tend to narrow these wide void

layers. For these reasons it seems likely that the reported

crystal structure is mechanically unstable. According to the

original publication, the crystal was grown as a thin epitaxial

crystal under ultrahigh vacuum. Apparently the crystal

structure is either strongly influenced by the substrate which

stabilizes the crystal or the structure was not determined

correctly. In either case, it is not an independent stable form;

we therefore exclude it from further consideration.

3. Classification

Neglecting CSD structure XUWROW and reassigning struc-

tures JUFWUC and HMGETP as discussed above, the

remaining crystal structures were organized into groups that

bear a strong ‘structural relation’ as discussed in Volume III of

International Tables for X-ray Crystallography (MacGillavry

& Rieck, 1983). For crystals to belong to the same group they

must have the same space-group symmetry, cell lengths in

similar proportions, similar cell angles, and molecular centers

at equivalent Wyckoff point(s) with similar structural para-

meter values where applicable. Crystal structures with alter-

native origin and/or cell choices were transformed to

consistent cell and origin choices prior to assessing their

structural relationship, if any. For monoclinic space groups,

cell choice 1 with unique axis b was utilized. For rhombohedral

space groups, the obverse setting of the hexagonal cell was

utilized. Origin choice 2 was utilized in cases where more than

one origin is provided in International Tables for Crystal-

lography. For molecules located at Wyckoff points that belong

to an equivalent set, preference was given to the label occur-

ring first alphabetically. Thus, Wyckoff point a was selected

rather than b in space group P421c (No. 114) since both are

equivalent. We refer to the members of these structurally

related groups as sharing a distinct structure. Note that we do

not require that the atomic positions be similar to be classified

in the same distinct structure. For example, two structures

[CSD structures DILWIE01 (Ebert et al., 1998) and ZEYHIU

(Noth & Thomann, 1995)] crystallize in space group P3c1 (No.

165) with molecular centers at Wyckoff point d. Their cell

parameters are also in similar ratios. Therefore, we classify

them in the same distinct structure, despite their different

chemical structures with different numbers of atoms.

The 70 crystal structures fall into 46 distinct structures. Five

structures are cubic (also called isometric), one is hexagonal,

four are trigonal, eight are tetragonal, six are orthorhombic, 16

are monoclinic and six are triclinic (also called anorthic).

These distinct structures are further characterized based on

the number and relative positions of neighboring centers of

mass in the following subsections. The center-of-mass lattice is

used here to be consistent with the reference state employed

in the prior work (Keith et al., 2004; Mettes et al., 2004). In the

fully orientationally disordered reference state only the

center-of-mass distances are relevant. As the temperature is

reduced, the systems undergo symmetry-breaking phase

transitions through orientation of the constituent molecules.

For the oriented molecules the closest contacts and/or the

strongest interactions may be with molecules that are not

strictly nearest neighbors with respect to centers of mass. The

interactions are addressed by Keith et al. (2004) and Mettes et

al. (2004), while this work focuses solely on the assignment of

the reference lattice.

3.1. Sphere packings

In 42 structures there are four or more neighbors that are

equidistant or nearly equidistant. Also, the neighbors are not

all in one hemisphere relative to the (arbitrary) reference

molecule. Such structures are identified as sphere packings

(Conway & Sloane, 1998), and classified by the space-group

symmetry of the center-of-mass lattice. The center-of-mass
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lattice is called the reference lattice for brevity and for

consistency with our prior work (Keith et al., 2004; Mettes et

al., 2004). The structures and their reference lattices are

tabulated in Table 1.

For 15 crystal structures, assignment of the reference lattice

is trivial since the unit cell shares the same Bravais symmetry

as the reference lattice and the molecules sit at high-symmetry

locations in the crystal. This is true of the structures in space

groups Fd3m (No. 227), I43m (No. 217) and P43m (No. 215)

with diamond cubic (diamond), body-centered cubic (b.c.c.)

and simple cubic (s.c.) reference lattices, respectively.

The body-centered cubic space group I43m (No. 217) with

molecules at Wyckoff point a is the most common structure in

the data set with 11 different crystal structures. The CSD

structure labeled NIWMIP is used as an example of that

structure in Fig. 2. The vertical axis in the figure is the

symmetry density defined as the ratio of the order of the

symmetry group (G) to the number of molecules (Z). Along

the horizontal axis are insets showing the molecular structure

on the left, the reference lattice on the right and the crystal

structure in the middle. The diagram shows symmetry

breaking during creation of the crystal. For a symmetry

breaking, the ratio of the symmetry density prior to and after

the transitions gives the index of the transition. To facilitate

visual comparisons of transition indices, the symmetry density

is plotted on a logarithmic scale in the figures. Fig. 2 conveys

that the full molecular symmetry is retained while the b.c.c.

reference-lattice symmetry is broken in forming the structure

in space group 217. The broken symmetry is the inversion,

which yields an index of two.

The four crystal structures assigned to the hexagonal-close-

packed (h.c.p.) reference lattice are all slightly compressed

along the c axis relative to the expectation for ideal close

packing of spheres. This is consistent with the observation for

many other h.c.p. structures (Sands, 1993). Of the elements

that adopt h.c.p. structures, only helium adopts the ideal unit-

cell dimension ratio, c=a = (8/3)1/2. Cadmium and zinc adopt

elongated unit cells with c=a > (8/3)1/2. Twenty-two other
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Figure 2
Symmetry-breaking plot for a structure with molecular center-of-mass
lattice coincident with the reference lattice, illustrated using NIWMIP.
The figure on the left is an isolated monomer with Td symmetry (G/Z =
24/1). The figure on the right is the b.c.c. reference lattice (G/Z = 96/2). In
the middle is the crystal structure in space group I43m (No. 217) with one
molecule at Wyckoff point a emphasized for clarity (G/Z = 48/2).

Table 1
Sphere packings.

Parent Space group
Wyckoff
point(s) G/Z CSD code(s)

Diamond Fd3m (No. 227) a 24 ZNOXAC01

Diamond, compressed I41=amd (No. 141) a 8 FUZLUH, VAFWAA

Diamond, elongated I41=a (No. 88) a 4 KANGUB01

Diamond, orthorhombic C2=c (No. 15) e 2 RASDOE, TFMETH02

b.c.c. I �443m (No. 217) a 24 DEQPAQ, HMGETP, HMSIPA, HXMTAM07, KELREY,
MESIAD, MPTHOT01, NIWMIP, POSLOY10, TMEPTC,
YEYQAU

R3c (No. 161) a 3 TCYMET

Pbcn (No. 60) c, d 2/3 YIMWEW

P�11 (No. 2) i 1 MEZDIE01, MEZDOK01

P�11 (No. 2) i, i, i 1/3 OHABEE

s.c. P�443m (No. 215) a 24 FOHCUA, FUZVOL, JUFWUC

I �44c2 (No. 120) c 4 YEMRIR

h.c.p. P63=m (No. 176) h 2 CUCZUV

P�33c1 (No. 165) d 3 DILWIE01, ZEYHIU

P�33 (No. 147) d 3 ZIZHIZ

f.c.c. P3121 (No. 152) b 2 MTRETC10

I �442m (No. 121) a 8 ZZZKDW01

I41=acd (No. 142) a 4 KUJSIR

P�4421c (No. 114) a 4 ADAMAN08, GERHOA

Cmce (No. 64) d, f 1 (MethaneIII)

C2=c (No. 15) e 2 REKYUB

C2=m (No. 12) i 2 MECKOU

P21=c (No. 14) e 1 MECKUA

P21=c (No. 14) e 1 TOHSUE

C2=c (No. 15) f, f, f, f 1/4 CTBROM, CARBTC07



elemental solids adopt slightly compressed h.c.p. structures

with c=a < (8/3)1/2. Despite variation in the unit-cell dimension

ratios, these elements are commonly described as adopting the

h.c.p. crystal structure. We utilize the same flexibility in

nomenclature when assigning the h.c.p. reference lattices to

molecular solids.

For 23 crystal structures, symmetry breaking in passing from

the reference lattice to the observed structure leads to

dramatic changes in the conventional unit cell size and/or

shape. Reference-lattice assignment in these cases is not

trivial. The CSD structure labeled MEZDIE01 serves to

illustrate the process (see Fig. 3). MEZDIE01 has a triclinic

unit cell in space group P1 (No. 2) with molecular centers at

the general Wyckoff point i. The � and � angles of the unit cell

are very close to 90�, so that the unit cell is metrically similar

to a monoclinic cell, but the connection to a b.c.c. reference

lattice is not immediately evident. The fractional coordinates

of the molecular centers of mass are very close to one-quarter

and three-quarters of the distance along a cell body diagonal.

If the molecular centers were at precisely these locations, and

molecular orientational ordering is ignored, then the unit cell

of the reference lattice can be halved in volume using a matrix

transformation. The resulting unit cell has one molecular

center per reduced cell. The reduced cell is nearly equi-axed

(cell lengths differ from the mean by less than 1%) and nearly

rhombohedral (angles differ from the mean by less than 1�).

The reduced cell belongs to the Niggli matrix character

number 44 (triclinic), but is only slightly distorted from char-

acter 5 (b.c.c.). Applying the standard matrix transformation

(for character 5) from the reduced cell to the conventional cell

yields the reference lattice. The product of the two matrix

transformations gives the overall transformation from the

reference lattice to the observed crystal structure. Finally, the

overall transformation matrix is confirmed using COPL

(Stokes et al., 2007). COPL confirms that all of the symmetry

elements present in the daughter structure are inherited from

the reference lattice, confirms the index of the transformation,

and provides the complete order parameter list for the

transformation. The matrix unit-cell representations and

matrix transformations used in determining the reference

lattice assignment starting with MEZDIE01 are given in

Appendix A. The same information for each of the structures

identified with sphere-packing reference lattices and their

associated COPL outputs are summarized in (supplementary)

Table 8.

Six crystal structures were identified with the diamond

reference lattice. Only one of these, ZNOXAC01, retains the

cubic unit cell with four nearest neighbors for each molecular

center. The other five are significantly distorted. Two are

compressed, one is elongated and two are orthorhombically

distorted similar to the �-plutonium structure with ten equi-

distant neighbors (NRL, 2009). These distortions may be due

to the low packing density of the ideal diamond cubic lattice

relative to the other reference lattices.

3.2. Rod packings

In 16 crystal structures there are two neighbors that are

equidistant or nearly equidistant and the third neighbor is

significantly further away than the second. In an additional six

crystal structures there are three or four equidistant or nearly

equidistant neighbors, but these neighbors are all in a single

hemisphere. For all 16 crystal structures, a synthon based on

one-dimensional chains of molecules has been identified. Here

the term synthon is used to refer to substructures present in

crystal structures. A similar concept is described by Lauher

(2004) and called networks. Chains of molecules are classified

by their rod symmetries (Kopský & Litvin, 2002). Classifica-

tion of the structures in these cases requires identification of

the rod symmetry and the lateral packing motif.

The CSD structure labeled MECKIO is used as an example

of a crystal structure composed of rods. Its symmetry-breaking

plot is illustrated in Fig. 4. The inset on the left is an isolated

monomer with Td symmetry (G/Z = 24/1). Second from the

left is a rod packing with rod group p4m2 (G/Z = 8/1). The

inset on the far right is a two-dimensional hexagonal packing

representing the lateral packing of the rods (G/Z = 12/1).

Second from the right is the crystal structure with one rod

emphasized for clarity (G/Z = 4/2). The crystal is viewed end-

on to emphasize nearly hexagonal packing of rods. The

symmetry density decreases at each stage of building the

crystal from its constituents.

All of the crystal structures composed of laterally packed

rods are summarized in Table 2. In the subset of crystal

structures containing rod packings, five different rod symme-

tries were identified, pmcm (7/16, 44%), p4m2 (4/16, 25%), p1
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Figure 3
Symmetry-breaking plot for a molecular center-of-mass lattice not
trivially related to the reference lattice, illustrated using MEZDIE01.
The figure on the left is an isolated monomer with Td symmetry (G/Z =
24/1). The figure on the far right is the b.c.c. reference lattice (G/Z = 96/2).
Second from the right is the b.c.c. reference lattice in a non-conventional
unit cell which may be obtained through a series of transformations. The
illustrated cascade of symmetry-breaking transitions from b.c.c. through
tetragonal (139a), orthorhombic (69a), monoclinic (12a) and triclinic (2a)
intermediates is not unique. The non-conventional unit cell is similar to
the crystal structure with one molecule emphasized for clarity in the
second illustration from the left (G/Z = 2/2).



(4/16, 25%) and pc11 (1/16, 6%). The majority of the rods

packed laterally in hexagonal close packing (9/16, 56%) while

a significant fraction adopted a square packing (6/16, 38%),

and only one example of a decidedly oblique packing (1/16,

6%) was observed. A total of eight combinations of rod

symmetries and lateral packings were observed.

In the CSD structure labeled RIMNAC the rods have p4m2

symmetry and adopt a nearly hexagonal lateral packing, but

there are three independent rotations about the rod axis.

These three rotations lead to three independent Wyckoff

orbits. This is in contrast to most of the other structures in the

data set for which the orientations of the rods are related by

symmetry operations of the three-dimensional crystal.

3.3. Planar packings

In five structures there are three or four neighbors that are

equidistant or nearly equidistant and the next neighbor is

significantly further away than the second. Also, the neighbors

are either coplanar or in one hemisphere relative to the

(arbitrary) reference molecule. Such structures are identified

as planar packings, and classified by their planar group

symmetry (Kopský & Litvin, 2002). The structures and their

planar group symmetries are tabulated in Table 3.

The CSD structure labeled MZNMOX10 is used as an

example of a crystal structure composed of planes of mole-

cules. Its symmetry-breaking plot is illustrated in Fig. 5. The

inset on the left is an isolated monomer with Td symmetry

(G/Z = 24/1). On the far right is a two-dimensional square

packing representing the center-of-mass lattice in the plane

(G/Z = 8/1). Second from the right is a planar packing with

point group S4 (G/Z = 4/1). Because the molecules are tipped

slightly in the three-dimensional crystal, the plane is not

viewed along its normal in the inset, but is viewed along the

molecular S4 axis to emphasize the symmetry of the undis-

torted planar packing. Second from the left is the crystal

structure with one plane emphasized for clarity (G/Z = 4/4).

The vertical axis indicates that symmetries are broken at each

stage.

3.4. Dimer packings

In three structures there is one closest neighbor and the

next closest neighbor is significantly further away than the
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Table 2
Rod packings.

Space group

Molecule
Wyckoff
point(s)

Rod
symmetry G/Z

Lateral
packing CSD code(s)

P42=nmc (No. 137) a p�44m2 8 Square FUZTEZ

Pnma (No. 62) c pmcm 2 Square GUTCED, JEYSEL, RIMMOP

C2=c (No. 15) e p�44m2 2 Hexagonal BOGMEP

C2=c (No. 15) e pmcm 2 Hexagonal MSISUL10, TMGEHS10, TMSNHS10

P21=m (No. 11) e p�44m2 2 Hexagonal MECKIO

P21=c (No. 14) e pc11 2 Hexagonal QUGBOJ

P21=c (No. 14) e p�11 1 Hexagonal DOCNIS

P21=c (No. 14) e p�11 1 Square TMSIAD

P21=c (No. 14) e, e pmcm 1/2 Hexagonal MXSNOX

P2=c (No. 13) e, f, g p�44m2 1/2 Hexagonal RIMNAC

P�11 (No. 2) i p�11 1 Square BASXOI

P�11 (No. 2) i p�11 1 Oblique XAGXAE

Table 3
Planar packings.

Space group

Molecule
Wyckoff
point(s)

Planar
symmetry G/Z CSD code(s)

P212121 (No. 19) a p4mm 1 MZNMOX10

P21=c (No. 14) e p2gg 1 CAMPOV, VAVYAS

P21=c (No. 14) e, e p6mm 1/2 CANFIG, MXSNOX

P�11 (No. 2) i, i, i, i p6mm 1/4 CANFOM

Figure 4
Symmetry-breaking plot for a rod packing, illustrated using MECKIO.
The figure on the left is an isolated monomer with Td symmetry (G/Z =
24/1). Second from the left is a rod packing with rod group p4m2 (G/Z =
8/1 = 8). The figure on the far right is a two-dimensional hexagonal
packing representing the lateral packing of the rods (G/Z = 12/1). Second
from the right is the crystal structure with one rod emphasized for clarity
(G/Z = 4/2). The crystal is viewed end-on to emphasize nearly hexagonal
packing of rods.



first. Such structures are identified as dimer packings, and

classified by their dimer point-group symmetry. The structures

and their dimer point-group symmetries are tabulated in

Table 4.

FOJBUB02 and VADRAU are cubic structures in space

group Pa3 (No. 205) with molecules at Wyckoff point c, which

has C3 point-group symmetry. Their second nearest neighbors

are 33% and 25% further than the closest, respectively.

Therefore, we consider these dimers as the synthon for the

crystal. The dimer centers of mass are at Wyckoff point a, with

C3i point-group symmetry. The dimer centers of mass form a

perfect face-centered cubic lattice. The symmetry-breaking

plot for FOJBUB02 is given in Fig. 6. The symmetries of the

monomer and the f.c.c. reference lattice are broken in creating

the crystal, but the dimer symmetry is retained in the three-

dimensional crystal.

LUFYEQ is a tetragonal structure in space group I41=a

(No. 88) with molecules at the general Wyckoff point, f . Since

the second nearest neighbor is 33% further than the first, there

are dimers serving as synthons for the crystal. The dimers

reside at Wyckoff point e, with C2 point-group symmetry. Each

dimer has one neighboring dimer that is closer than any other.

Therefore, the dimers pair to produce quadramers at Wyckoff

point a, with S4 point-group symmetry. The quadramer center-

of-mass lattice is a somewhat compressed diamond cubic

structure.

CARBTC is a fourth structure identified as a dimer packing,

but this assignment is less apparent from the histogram of

neighbor distances. In the structure, each molecule has one

nearest neighbor and two additional neighbors that are 6%

further. This is insufficient for a sphere packing and the

arrangement of molecules is inconsistent with simple planar

packings. Therefore, the packing was analyzed using dimers

centered at an inversion of space group P21=c (No. 14).

3.5. Mixed

Three crystal structures belonging to a common distinct

structure do not fit in the above classification system because

molecules residing at different Wyckoff positions have

different numbers of nearest neighbors. Structures KOXKOX,

SENLAY and RUQMEV are cubic structures in space group

P43n (No. 218) with molecules at Wyckoff positions a and c.

The structures are tabulated in Table 5. The molecules at

Wyckoff position c form rods with rod group p4m2 running

parallel to all three orthogonal coordinate directions. The

molecules at Wyckoff position a each have 12 equidistant

nearest neighbors in a slightly distorted icosahedral coordi-

nation. Although there are other crystal structures with

multiple Wyckoff orbits in the data set, these three structures

differ because the coordination of nearest neighbors is
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Table 4
Dimer packings.

Space group

Molecule
Wyckoff
point

Dimer
Wyckoff
point G/Z CSD code(s)

Pa�33 (No. 205) c (3) a (3) 3 FOJBUB02, VADRAU

I41=a (No. 88) f (1) e (2)† 1 LUFYEQ

P21=c (No. 14) e (1) a (1) 1 CARBTC

† Pairs of dimers form quadramers with S4 point-group symmetry centered at Wyckoff
point a.

Figure 6
Symmetry-breaking plot for a dimer packing, illustrated using
FOJBUB02. The figure on the left is an isolated monomer with Td

symmetry (G/Z = 24/1). Second from the left is a dimer with C3i point-
group symmetry (G/Z = 6/2). On the far right is the f.c.c. reference lattice
(G/Z = 192/4). Second from the right is the crystal structure in space
group 205 with one dimer at Wyckoff point a emphasized for clarity
(G/Z = 24/8).

Table 5
Mixed packings.

Space group
Wyckoff
point(s) G/Z CSD code(s)

P�443n (No. 218) a, c 3 KOXKOX, SENLAY, RUQMEV

Figure 5
Symmetry-breaking plot for a planar packing, illustrated using
MZNMOX10. The figure on the left is an isolated monomer with Td

symmetry (G/Z = 24/1). On the far right is a two-dimensional square
packing representing the center-of-mass lattice in the plane (G/Z = 8/1).
Second from the right is a planar packing with point group S4 (G/Z = 4/1).
Second from the left is the crystal structure with one plane emphasized
for clarity (G/Z = 4/4).



qualitatively different for the two sets. In the other examples,

the neighbor histograms are only subtly different when

comparing the various orbits.

4. Discussion and conclusions

Identification of lower-dimensionality synthons as a means

of describing three-dimensional crystals has been discussed

previously (Lauher, 2004). The crystal structures identified

here as rod packings have been called �-networks and planar

packings have been called �-networks in the nomenclature of

Lauher (2004). The molecules used by Lauher to illustrate

sub-periodic networks were polar and their intermolecular

interactions had strong hydrogen bonding and/or ionic char-

acter. Formation of strongly bound one-dimensional struc-

tures is common, but not universal, in such cases. Two types of

two-dimensional structures were identified by Lauher. The

first is a two-dimensional synthon composed of parallel one-

dimensional rods, called �-networks. The second is a funda-

mentally two-dimensional structure without �-network

substructures. In all of Lauher’s examples, three-dimensional

crystal structures were composed of one- or two-dimensional

networks.

Given the cubic point-group symmetry (Td) of the mole-

cules considered here, we expected that the corresponding

crystal structures would be composed of molecules having

multiple equidistant and isoenergetic interactions with four or

more neighbors leading to sphere packings or �-networks in

Lauher’s nomenclature. This expectation proved accurate for

60% (42/70) of the structures. Of these, b.c.c. (16/42, 38%) and

f.c.c. (12/42, 29%) were the most common reference lattices;

h.c.p. and s.c. reference lattices contributed 10% (4/42) each.

Only one structure (2%) adopted the ideal diamond cubic

lattice, but five structures (12%) were identified with three

grossly distorted diamond cubic structures. Together, these

eight reference lattices span the observed diversity of crystal

structures based on sphere packings and are illustrated in Fig. 7

under the ‘Sphere Packing’ trunk.

Somewhat unexpected was the 40% (32/70) of structures

that adopted lower-dimensionality synthons. The next largest

subset of the crystal structures was composed of rods. They

comprised 23% (16/70) of the structures. A total of eight

combinations of rod symmetries and lateral packings were

observed.

Smaller fractions of other structures were assigned. Five

cases (5/70, 7%) of planar structures, also called �-networks,

were observed. Four cases (3/70, 4%) of spherical packings of

dimers and one case (1/70, 1%) of a spherical packing of

quadramers were assigned. Finally, three isostructural exam-

ples (3/70, 4%) of a mixed sphere and rod packing in space

group P43n (No. 218) belonged to the data set. Given the

small numbers of these structural types, their relative

proportions may not be accurately determined in this set of

data. Also, the possibility of unobserved structural motifs

cannot be excluded. Fig. 7 shows lower-dimensional and

oligomer sythons under the ‘Other’ trunk, which are further

broken down to specialized types of rod packings and so on.
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Figure 7
Tree diagram of the distribution of data sets among crystal-packing
synthons, where spheres and other types of packing form the trunk and
the translational arrangements of the structures in our data set form the
leaves. c.p. = close packed. Asterisks on JUFWUC and HMGETP are due
to space-group corrections (see x2.1 for details).



The goal of the research described in this report was to

determine the frequency of sphere packings which are readily

amenable to inclusion in the GPDs developed previously

(Keith et al., 2004; Mettes et al., 2004). In the set of crystal

structures composed of molecules in the Td point group, 60%

are amenable to inclusion in the GPDs using the molecule as

the synthon. Eight reference lattices span the diversity of

observed center-of-mass lattices so that a set of at least eight

global phase diagrams are required to represent the phase

behavior of the sphere-packing subset of the data set. Dimer

and quadramer packing structures are also suitable for inclu-

sion in GPDs using the point-group symmetry of the synthon.

These account for another 6% of the crystal structures. Similar

proportions are expected for molecular symmetries belonging

to other cubic point groups.

A qualitatively different set of phase diagrams are required

for the structures that adopt lower-dimensionality synthons

(rod and planar packings) or mixed structures. The presence

of such structures implies a hierarchy of interaction strengths.

We expect that strong interactions lead to the rods while

weaker interactions are responsible for lateral packing of the

rods into crystals. Such a hierarchy of interaction strengths is

expected for molecules belonging to lower molecular point-

group symmetries. Therefore, for non-cubic point-group

symmetries, it is expected that the proportion of crystal

structures classified as sphere packings would be smaller and

the proportion of rod and planar packings would be greater

than that reported here for tetrahedral molecules.

APPENDIX A
Sphere packings

For 42 of the 70 crystal structures in the data set considered,

the center-of-mass distribution was identified with a sphere

packing. For 15 of these, the identification was trivial since the

unit cell has the same symmetry as the idealized sphere

packing. For the remaining 27 structures, the center-of-mass

distribution is slightly distorted from the idealized sphere

packing. The process of identifying the sphere packing is not

trivial in these cases because unit-cell distortions and/or

translation of the centers of mass change the symmetry of the

center-of-mass lattice. To illustrate the process of reference-

lattice assignment, the CSD structure MEZDIE01 is consid-

ered in detail below. Details of the reference-lattice assign-

ments for all 42 structures are summarized in (supplementary)

Table 6 and accompanying notes.

CSD structure MEZDIE01 has a triclinic unit cell with

b=a = 1.4627, c=a = 0.9209, � = 90.48�, � = 111.67� and � =

89.99�. The unit parameters can be conveniently represented

in matrix form where the matrix columns correspond to the

cell vectors and the rows are components of the vectors

parallel to orthonormal laboratory-frame coordinates,

M1 ¼

1 0:0003 �0:3401

0 1:4627 �0:0076

0 0 0:8558

2
4

3
5: ð1Þ

The molecular centers of mass are located at fractional coor-

dinates, x = 0.7606, y = 0.2506 and z = 0.2418, and at the

location related by inversion about the cell body center. Unit-

cell transformations are facilitated using four-dimensional

vectors in which the fourth component is unity,

�1 ¼

0:7606

0:2506

0:2418

1

2
664

3
775; ð2Þ

�01 ¼

1

1

1

2

2
664

3
775� �1: ð3Þ

Enumeration of the neighboring centers of mass for an arbi-

trarily chosen reference molecule reveals that there are six

neighbors within a shell 3% larger than the nearest neighbor

distance and two additional neighbors within a shell 11%

larger than the nearest neighbor distance. These neighboring

molecular centers are neither coplanar nor are they all in a

single hemisphere. Therefore, the molecular centers satisfy the

conditions for a (slightly distorted) sphere-packing reference

lattice.

Recognizing that the molecular-center fractional coordi-

nates are nearly one-quarter and three-quarters of the

distance along a body diagonal suggests that a matrix trans-

formation with determinant equal to one-half is needed to

generate the reduced cell for the reference lattice with one

molecule per cell. The following matrix transformation suffices

for the current example,

T12 ¼

1=2 1=2 0

1=2 �1=2 0

1=2 1=2 �1

2
4

3
5; ð4Þ

jT12j ¼ 1=2: ð5Þ

Such transformations may be generated by inspection of the

neighbor coordinates relative to the chosen reference center

or by using the LePage software as implemented in the

CheckCell program, for example (CCP14, 2004). The matrix

representation of the reduced cell is given by the matrix

product of the original matrix representation and the trans-

formation matrix,

M1 � T12 ¼

0:3301 0:3298 0:3401

0:7276 �0:7352 0:0076

0:4279 0:4279 �0:8558

2
4

3
5: ð6Þ

The reduced cell has b=a = 1.0066, c=a = 1.0161, � = 108.00�,

� = 107.31� and � = 107.084�. Construction of the Niggli matrix

indicates that this triclinic cell (character 44) is reasonably

close to the reduced cell corresponding to the body-centered

cubic cell (character 5) (Hahn, 2002). For the idealized char-

acter 5 reduced cell, b=a = c=a = 1 and � = � = � = cos�1ð�1=3Þ

’ 109.47�. For the experimental reduced cell, the angles are

roughly two degrees smaller than the ideal value, which

indicates that the primary distortion is rhombohedral. Smaller
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perturbations lead to slightly unequal unit-cell length and

angle parameters.

To determine the fractional coordinates of the centers of

mass in the transformed coordinates, it is convenient to define

an augmented transformation matrix as follows,

S12 ¼
T12 w12

0 1

� �
; ð7Þ

where w12 is the origin shift in the original coordinate system.

In this case,

w12 ¼

3=4

1=4

1=4

2
4

3
5: ð8Þ

Then the transformed coordinates are given by

�2 ¼ S�1
12 � �1 ¼

0:0112

0:0100

0:0188

1

2
664

3
775; ð9Þ

�02 ¼ S�1
12 � �

0
1 ¼

�0:0112

�1:0100

�1:0188

1

2
664

3
775; ð10Þ

both of which are reasonably close to the origin, modulo

integer translations of the unit cell. The Euclidean distance of

the fractional coordinates �2 to ½0; 0; 0; 1�T is about 0.024.

Similarly, the Euclidean distance of �02 to ½0;�1;�1; 1�T is the

same. Both of these are small relative to unity.

Since the reduced cell is close to the character 5 conditions

with one molecule close to the origin, the sphere packing is

identified with the b.c.c. reference lattice. Applying the tabu-

lated transformation of the reduced cell to the conventional

cell (Hahn, 2002),

T23 ¼

0 1 1

1 0 1

1 1 0

2
4

3
5; ð11Þ

jT23j ¼ 2; ð12Þ

yields the matrix representation of the conventional unit cell,

M3 ¼ M2 � T23 ¼

0:6699 0:6702 0:6599

�0:7276 0:7352 �0:0076

�0:4279 �0:4279 0:8558

2
4

3
5: ð13Þ

As anticipated above, the cell is slightly distorted from an

ideal cubic cell, primarily by a rhombohedral distortion (b=a =

1.005, c=a = 1.003, � = 86.5�, � = 86.0�, � = 85.2�).

Since the center of mass is at the origin in both the reduced

cell and the b.c.c. reference lattice, there is no need for another

origin shift and the augmented transformation matrix is

S23 ¼
T23 0

0 1

� �
: ð14Þ

The overall transformation from the reported crystal structure

of MEZDIE01 to the b.c.c. reference lattice is the matrix

product of the stepwise transformations,

S ¼ S12 � S23 ¼

0:5 �1 �0:5 0

0:5 1 �0:5 �0:5
0:5 0 0:5 �0:5
0 0 0 1

2
664

3
775; ð15Þ

jSj ¼ 1; ð16Þ

and the transformed coordinates are given by

�3 ¼ S�1
� �1 ¼

0:0088

0:0100

0:0012

1

2
664

3
775; ð17Þ

�003 ¼ S�1
� �1 þ

1

0

0

0

2
664

3
775

0
BB@

1
CCA ¼

0:5088

0:5100

0:5012

1

2
664

3
775: ð18Þ

The determinant of the overall transformation jSj is unity so

that the volumes of the initial cell and the reference-lattice cell

are the same in this case. Both contain two molecules, but they

are paired differently as reflected in the use of primes in the

center-of-mass coordinates, � 01, � 02 and � 003 . Both molecular

centers of mass are within 1% of the unit-cell dimensions of

their idealized locations at the origin and cell body center,

respectively. In the idealized b.c.c. lattice, each lattice point

has eight equidistant nearest neighbors. The rhombohedral

distortion accounts for the two neighbors that are somewhat

more distant than the closest six. Other minor distortions lead

to small differences in the distances to the closest six neigh-

bors.

COPL can be used to verify that the overall transition is

consistent with the symmetries of the reference lattice and the

daughter structure (Stokes et al., 2007). In addition, COPL

provides a complete list of order parameters for the transition.

If a single order parameter with the appropriate size and index

appears on the list, then it is identified as the primary order

parameter. Otherwise, it is identified as a coupled transfor-

mation. For the example of MEZDIE01, there is no single

primary order parameter consistent with the size (2) and index

(48) of the transformation, so the transformation is coupled.

The program ISODISPLACE may be used to identify the

primary order parameter for coupled transitions (Campbell et

al., 2006). Since this identification was not necessary for our

purposes, no attempt to further characterize the required

coupling was attempted for coupled transformations. COPL

output for each of the structures identified with sphere-

packing reference lattices are summarized in (supplementary)

Table 8.
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APPENDIX B
Rod packing

For 16 of the 70 crystal structures in the data set considered,

the center-of-mass distribution was identified with a rod

packing. To illustrate the process of reference-lattice assign-

ment, the CSD structure MECKIO is considered in detail

below. Details of the assignments for all 16 structures are

summarized in (supplementary) Table 6.

CSD structure MECKIO has a monoclinic unit cell with

b=a = 1.6109, c=a = 1.1271 and � = 104.95�. The unit para-

meters can be conveniently represented in matrix form where

the matrix columns correspond to the cell vectors and the rows

are components of the vectors parallel to orthonormal

laboratory-frame coordinates,

M1 ¼

1 0 �0:2908

0 1:6109 0

0 0 1:0889

2
4

3
5: ð19Þ

The molecular centers of mass are related by a screw axis,

�1 ¼

0:2050

1=4

0:2193

1

2
664

3
775; ð20Þ

�01 ¼

1

1

1

2

2
664

3
775� �1: ð21Þ

Enumeration of the neighboring centers of mass for an arbi-

trarily chosen reference molecule reveals that there are two

equidistant nearest neighbors. Two additional neighbors are

within a shell 3% larger than the nearest-neighbor distance,

but the set of four neighbors are all within a single hemisphere

relative to the reference center. Therefore, the set of four

neighbors does not indicate a sphere packing.

The nearest neighbors are part of a chain of molecules

oriented along the crystallographic a axis. Therefore, the unit

cell is transformed such that the chains are directed along the c

axis, and the other axes are orthogonal. A matrix accom-

plishing the desired transformation is

T12 ¼

0 0:2908 1

1 0 0

0 1 0

2
4

3
5; ð22Þ

jT12j ¼ 1: ð23Þ

A subsequent rotation about the chain axis orients the chain

symmetry elements relative to the a and b axes and rescales

those axes,

T23 ¼

0:5814 0:5814 0

�0:8600 0:8600 0

0 0 1

2
4

3
5; ð24Þ

jT23j ¼ 1: ð25Þ

The product of the transformation matrices gives the overall

transformation matrix,

T ¼ T12 � T23: ð26Þ

To determine the fractional coordinates of the centers of mass

in the transformed coordinates, it is convenient to define an

augmented transformation matrix as follows,

S ¼
T w

0 1

� �
; ð27Þ

where w is the origin shift in the original coordinate system,

w ¼

0:2050

1=4

0:2193

2
4

3
5: ð28Þ

Transforming the atomic coordinates using S shows that the

molecular centers of mass are at Wyckoff point a and mole-

cular mirror planes coincide with Wyckoff point f of rod group

p42m. Considering only the x and y coordinates of the rods

yields a close approximation to a hexagonal (p6mm planar

group) projection. Therefore, MECKIO is characterized as a

hexagonal packing of p42m rods.

APPENDIX C
Other packings

Twelve of the 70 crystal structures in the data set considered

were identified as planar packings, dimer packings or mixed

packings. The procedures for characterizing these structures

are similar to those illustrated above for sphere and rod

packings. Therefore details are not given here, but may be

found in (supplementary) Table 6.
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